• 1612-2024

    Industrial Greening: Equipment for Emissions Reduction

    In the great journey of striving towards carbon peak in the industrial field, environmental protection process equipment such as ball rollers, mixers, compaction granulators, cold and hot pressing technologies have become the core driving force for promoting green transformation in key industries. This series of actions not only demonstrates the power of technological innovation, but also embodies a profound commitment to efficient resource utilization and environmental protection.

  • 1204-2024

    6 types of equipment on the oxidation pellet production line

    It has been found through practice that the finished ore produced by the grate machine rotary kiln process has the characteristics of uniform quality, good metallurgical properties, more usable fuels, and strong adaptability to raw materials. This article introduces what equipment should be equipped with this production line equipment.

  • 1201-2024

    Application of vertical intensive mixer in sintering

    In the past 20 years, many sintering plants have continued to innovate traditional sinter material preparation technology. Japanese companies such as Sumitomo and Nippon Steel were the first to use vertical intensive mixers for mixing sinter materials. Through research and practice at Sumitomo Wakayama Third Sintering Plant, the use of a vertical powerful mixer instead of a cylindrical mixer has enhanced the mixing effect of the sintered raw materials, and the corresponding granulation effect has also been enhanced, ultimately making the sintered raw materials highly breathable. The sintering speed is increased by 10%~12%, and the coke powder addition ratio can be reduced by 0.5%.

  • 1509-2023

    Experimental Research Regarding the Effect of Mineral Aggregates on the Wear of Mixing Blades of Concrete Mixers (2)

    The tests were carried out on an experimental stand designed and built by the authors of this paper. The stand reproduces on a scale of 1:2 a drum made up of a double-axis horizontal mixer. The stand had the possibility to change the value of the attack angle of the mixing blades, corresponding to the following values: 30, 45, and 60 degrees. The results of the tests established the dependence between the type of material and the wear rate of the blades as well as the influence exerted by the angle of attack on the wear of the mixing blades. It was shown that when the inclination angle of the blade relative to the shaft axis increases, the cumulative mass loss decreases, with values between 43% and 55.83%, as a function of the quality of blade material.

  • 0209-2023

    Experimental Research Regarding the Effect of Mineral Aggregates on the Wear of Mixing Blades of Concrete Mixers (1)

    In concrete industry production, mixers play a crucial role by facilitating the efficient and consistent blending of various constituents to create high-quality concrete. Because the mixers in the concrete industry work in conditions characterized by abrasive and erosive loadings, the authors of this paper tried to establish a dependence between the quality of the material from which the mixing elements are made and their wear resistance. Three types of cast irons alloyed with chromium, specific to the construction of mixing blades, were used in this research.

  • 0707-2023

    Rotor-Stator Mixers: From Batch to Continuous Mode of Operation—A Review (3)

    Section 6 discussed what this implies when comparing emulsification efficiencies between the two modes of operation. Several different theories have been suggested, but there is of yet no clear consensus in the literature for how continuous mode RSMs should be operated in order to give the same emulsion as in a batch RSM.

  • 3006-2023

    Rotor-Stator Mixers: From Batch to Continuous Mode of Operation—A Review (2)

    This review summarizes and critically compares the current understanding of differences between these two operating modes, focusing on shaft power draw, pumping power, efficiency in producing a narrow region of high intensity turbulence, and implications for product quality differences when transitioning from batch to continuous rotor-stator mixers.

  • 1606-2023

    Rotor-Stator Mixers: From Batch to Continuous Mode of Operation—A Review (1)

    Although continuous production processes are often desired, many processing industries still work in batch mode due to technical limitations. Transitioning to continuous production requires an in-depth understanding of how each unit operation is affected by the shift. This contribution reviews the scientific understanding of similarities and differences between emulsification in turbulent rotor-stator mixers (also known as high-speed mixers) operated in batch and continuous mode.

  • 1205-2023

    Numerical Modeling of the Mixing of Highly Viscous Polymer Suspensions in Partially Filled Sigma Blade Mixers (2)

    Two mixing indexes are used to evaluate the mixing condition, namely, the Ica Manas-Zlaczower dispersive index and Kramer’s distributive index. Some fluctuations are observed in the predictions of the dispersive mixing index, which could be associated with the free surface of the suspension, thus indicating that this index might not be ideal for partially filled mixers. The Kramer index results are stable and indicate that the particles in the suspension can be well distributed. Interestingly, the results highlight that the speed at which the suspension becomes well distributed is almost independent of applying heat both before and during the process.

  • 0505-2023

    Numerical Modeling of the Mixing of Highly Viscous Polymer Suspensions in Partially Filled Sigma Blade Mixers (1)

    This paper presents a new non-isothermal, non-Newtonian CFD model for the sigma blade mixing of an adhesive suspension, where both the free surface and viscous heating are accounted for. The suspension is modeled as a viscoplastic fluid, and model calibration is performed via optical temperature measurements. To evaluate the mixing quality, we have used Zlaczower’s dispersive mixing index as well as Kramer’s distributive mixing index. The model is used to investigate the effect of applying heat both before and during the process on the mixing quality.

Get the latest price? We'll respond as soon as possible(within 12 hours)

Privacy policy