-
1309-2024
Thinking on the development direction of non-blast furnace ironmaking technology under double carbon background.
Solemnly committed at the General debate of the 75th session of the United Nations General Assembly on 22 September 2020:China will increase its contribution of state funding,CO2 emissions should peak by 2030,Working towards carbon neutrality by 2060,To achieve carbon neutrality and dual carbon by 2060 is the solemn commitment of the Chinese government to the international community, and it is also an inevitable strategic goal for the development of our steel indust. In general, the steel industry energy saving and carbon reduction, cost reduction and efficiency are the main ways: 1. Eliminate backwardness, save energy and improve energy efficiency; 2. Forming an ecological chain between steel and related industries; 3. Pay attention to the use of scrap steel resources; 4. Improve the efficiency of steel use; 5. Reduce fossil fuel consumption and find alternatives to fossil fuels; 6. Carbon dioxide collection and storage. We will do a good job in energy conservation and emission reduction, innovate technology, reduce costs and increase efficiency, and coordinate upstream and downstream carbon reduction. Relying on iron ore to achieve the two-carbon goal can only be a transition from carbon reduction to hydrogen reduction. The breakthrough of hydrogen reduction technology may take a long time, so in the future, blast furnace ironmaking will still be the mainstream technology of iron and steel industry. In the traditional process of blast-coking-sintering iron making, dust and flue gas are discharged greatly. The pollutant emissions of sintering machine and coking plant account for more than half of the total emissions of iron and steel complex enterprises, and they are the biggest pollution sources in the steel production process. Due to the devastating effect of coking on the environment, Western countries have shut down 90% of coking equipment. Therefore, reducing coke ratio, increasing pellet ratio and reducing sinter ratio are the most effective ways to save energy and reduce emission in traditional iron and steel process. The transformation and upgrading of the steel industry and the road of low-carbon and green development are inevitable trends. The global production and marketing of direct reduced iron are flourishing, and the development of hydrogen metallurgy technology is a global consensus. Under the guidance of the two-carbon policy, the main domestic iron and steel enterprises have been involved in the field of non-blast furnace ironmaking technology. Make full use of the historic opportunities faced by the non-blast furnace smelting industry, meet the difficulties, and make the industry healthy and healthy development. In the context of the global development of low-carbon economy, China's non-blast furnace smelting industry has formed an innovative development trend of multi-process equipment and process routes. Under the policy guidance of carbon peak and carbon neutrality, the state encourages the development of non-blast furnace ironmaking technology, and iron and steel enterprises have the demand for transformation and development. The development of non-blast furnace iron-making technology is conducive to saving precious coking coal resources, conducive to the structural adjustment of the iron and steel industry, conducive to reducing environmental pollution and reducing CO2 emissions, conducive to the development of composite iron ore, refractory iron ore, conducive to the treatment of iron dust and ferrous slag in steel mills and other ferrous waste, in line with the general policy of circular economy. Non-blast furnace ironmaking technology is expected to become the trend of realizing low-carbon ironmaking in iron and steel industry.
-
1901-2024
Effect of H2 on Blast Furnace Smelting
In this paper, the research status of the thermal state, reduction mechanism of iron-bearing burden, coke degradation behavior, and formation of the cohesive zone in various areas of blast furnace after hydrogen-rich smelting is summarized, which can make a more clear and comprehensive understanding for the effect of H2 on blast furnace ironmaking.
-
0112-2023
The Roles of DRI in Electric Arc Furnaces and Blast Furnaces
First, using a certain proportion of DRI in the smelting process of high-quality steel in EAF can improve the mechanical properties and overall quality of high-quality steel. At the same time, reasonable control of the application proportion of DRI can achieve the purpose of energy saving and increase in production, which is of great significance to improving the comprehensive benefits of EAF steelmaking. Second, the application of DRI in BF steelmaking can reduce the coke ratio of BF steelmaking and increase the output of BF steelmaking. The economic benefits of BF steelmaking are greatly improved.
-
1902-2021
Non-blast furnace ironmaking
The tunnel kiln process is relatively simple, the technical content is low, and the raw materials, reducing agents, and fuels are easy to solve. The process has strong practicability, small early investment, and is suitable for small-scale production. It is a metallurgical reduction production process commonly used in the powder metallurgy industry.